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AhstrIct-lmpulsively loaded plastic structures deform beyond the limits of applicability of the geometric
ally linear theory. It was experimentally observed that due to the membrane action actual permanent
displacements are smaller than those predicted by the infinitesimal theory. Exact solutions for deformed
shapes in the geometrically nonlinear range are not known for anisotropic structures.

The note advances a technique allowing to bound from below the permanent, moderately large
deflection at a chosen point of a rigid-plastic, dynamically loaded structure. The method originally
developed for isotropic solids and introducing an auxiliary kinematically admissible velocity field allowing
to estimate the dissipation due to the nonlinear terms in the strain rates is extended to orthotropic plates
and shells.

Lower bounds are obtained to maximum deflections of circular orthotropic plates obeying a piece-wise
linear yield criterion when accounting for moderately large displacements. The influence of orthotropy on
the permanent deflections is discussed and the results are compared to those of the linear theory,
Meaningful differences are noticed, particularly for more intense impulses. Results for a cylindrical shell are
also presented.

1. INTRODUCTION

Impulsively loaded plastic structures may deform significantly during the process of motion. An
analysis of permanent deformations is therefore needed in the geometrically nonlinear range.
Most of the attention related to plastic behavior of beams, plates and shells concentrated on
small displacements[1-3J. For moderately large deflection theories exact solutions, regarding
the deformed shape at rest after impact, exist for beams and circular plates [4, 5J. Experiments
are reported in [6].

As the exact solutions in the plasto-dynamics are difficult to obtain a particular attention was
given to bounding techniques allowing to estimate the time of motion and the final maximum
deftections[7-12J. Techniques were developed as well regarding upper bounds to deflections in
the nonlinear range[13-15J. Recently a method of assessing the permanent deflection from
below has been proposed and successfully applied to struct.ures made of isotropic, perfectly
plastic materials[l6-17]. Lower bound techniques in the nonlinear range involve some information
regarding the deformation itself as the stress and deformation are coupled via the governing
equations. Hence a lower bound technique in the nonlinear deformation range imposes the
requirements not appearing at small displacements when the deformed and undeformed
configurations can be referred to the material co-ordinate system without any essential
modification.

On the other hand plastic anisotropy influences the behavior of structures. The differences
consist not solely in value of the collapse load [18-19J. but concern the collapse modes as well.
Hence it appears worthwhile to study the behavior of plastically anisotropic structures in the
dynamic range at moderately large deflections. In tbe linear range the problem was studied in
[20-21].

The present note concerns estimations of the permanent deflections of rigid, perfectly
plastic structures. A lower bound technique exposed in [16] is extended on anisotropic solids
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and structures in order to estimate both the influence of anisotropy and of moderately large
deflections on the final displacements of impulsively loaded plates and shells. The material is
assumed to be incompressible and following the piecewise linear yield criterion in the space of
principal stresses (22],

In Section 2 the bounding technique developed in [17) is recalled with unessential
modifications as required by the employed criterion of yielding. The yield condition is specified
next in application to circular plates and cylindrical shells exhibiting a plastic anisotropy.
Section 4 gives estimations for orthotropic plates, studies the influence of the orthotropy ratio
on the permanent deflections and gives comparisons with the isotropic case. Cylindrical shells
of a sandwich wall are considered in the next section, Section 6 contains conclusions and
general remarks as justified by the analysis performed,

2. LOWER BOUNDS TO LARGE DISPLACEMENTS

Let us consider a rigid-plastic solid of volume Voand surface So in the initial configuration.
The body is referred to a cartesian coordinate system Xi associated with the initial configura
tion. The material reference system will be employed throughout. The original smooth surface
So consists of the part SoP where the surface tractions Pj(x t) are prescribed and of the part Sou
where the displacements Uj

S or velocities ViS are given, The surface tractions are considered
conservative throughout the deformation process, The mass per unit volume is denoted by p.

In the solid in motion we consider two fields of displacements, velocities and accelerations
satisfying the prescribed kinematical constraints. The fields Uj(x, t), Uj(x, t) and Uj(x, t) denote
the exact solution whereas U~(x, t), U~(x, t) and U*(x, t) represent kinematically admissable
vector fields of displacements, velocities and accelerations, respectively. The problem setting is
thus as that employed in [16, 17] for isotropic solids. To make the note selfcontained we
develop the basic equations of the adopted approach, adding the modifications imposed by the
requirement of plastic anisotropy. Equations of the large deflection theory of shells are exposed
in [23]. The equations of motions are

[(8· + U)Tk ·} k = pifI} t,J J. , (2.1)

where Tij is the symmetric Piola-Kirchhoff stress tensor. The stress field is subjected to the
boundary conditions

(2,2)

Nk standing for components of the normal vector to Sop.
The displacement and velocity boundary conditions are respectively for the exact Uj and a

kinematically admissible U, fields as follows

. * _. SU i(X, t) - Ui on Sou'

(2,3)

(2.4)

The initial conditions specify the requirements imposed on the displacement and velocity
fields at the application of impulsive loading. For the exact solution they are

(2.5)

For an impulsively loaded structure the motion following the exact velocity field ceases at
t = tt. When we consider a kinematically admissible velocity field U, the motion might cease at
another instant of time t = t*. Hence the final conditions are

U(X, tf } = 0, U*(x, t*) =0 Vx E Yo. (2.6)

The Green strain rate tensor specifying the deformation rate field considered continuous in
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(2.7)

For completeness we specify a yield condition. It was shown in [24] that at moderately large
deflections of plates and shells the yie~d condition written in terms of the Cauchy stress can be
assumed in the same form if written in the initial configuration in terms of the symmetric
Piola-Kirchhoff stress. In the case of anisotropic materials the parameters Ai> say, describing
directional properties of the solid enter the criterion. Thus

(2.8)

is the general form of the yield condition which we shall refer to the preferred directions of
anisotropy.

It is assumed that the plastic flow law applies thus the rates (2.7) during plastic flow are as
follows

• a<fl
Eij =AaT.' A;Jl:0.

I)

(2.9)

Having recalled the basic relations and conditions we can proceed to establish a bound to
the displacements at moderately large geometry changes. To this end we employ the principle
of virtual work considering the state in equilibrium on a virtual field of displacement rates U1.
Multiplying (2.1) by U,· and employing the stress boundary condition (2.2) one eventually
obtains

(2.10)

The r.h.s. integral in (2.10) represents the rate of internal work on the kinematically admissible
velocity field U1. The above expression can thus be expressed as follows

(2.11)

where

(2.12)

are respectively linear and nonlinear parts of the strain rate. The nonlinear part involves both
the exact displacement field Ui as well a$ the kinematically admissible velocity field ui. As it is
seen from (2.12) the expression (2.11) ~ontains the displacement field of the unknown exact
solution. OUr goal is now to estimate the exact displacement field, or at least to get a bound to
the most interesting from the engineering point of view, components of moderately large
displacement vector Ui'

We shall now pass to an estimation of the left hand side of (2.11). To this end we consider
for the time being i3;, and i3;* as two independent kinematically admissible strain rate fields
derived from two kinematically admissible fields Ui and Ui. This separation of the strain rate
(2.7) into two parts defined in (2.11) is essential for the proposed bounding technique. Instead of
calculating the right hand side of (2.11) we shall establish a bound to its value making use of
the Drucker postulate. Employing the plastic potential flow law to the yield criterion (2.8) we
can find the corresponding values T=and T;* since the dissipation is.fully determiaed by the
kinematical requirements once the yield condition is specified. The components T: and T:*
follow directly from the plastic potential flow law once the separation (2.12) is made. The yield
condition convexity allows to arrive at an inequality for the iBtemal dissipation of the
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kinematical admissible velocity field U;. Instead of (2.11) one obtains

(2.13)

This inequality is the basic one for an estimation of a bound to the displacement Uj, which is
the only unknown quantity in (2.13).

Let us integrate (2.13) within the time interval (0, t*), thus from the beginning up to the
termination of motion. The integration yields

-f PUj(t*)iij(t*)dv+l'*f PUjUtdVdt+lr*f E~*T~*dVdt. (2.14)
Vo 0 Vo 0 Vo

It has to be remarked that the initial conditions (2.5), which are known and apply both to Uj and
U;, enter the inequality.

When a kinematically admissible velocity field U; is chosen the l.h.s. of (2.14) contains
solely known quantities. The r.h.s. involves the only one unknown, namely Uj • Hence (2.14) can
serve to estimate this displacement. Its value depends on the choice of a kinematically
admissible velocity field U;. Moreover, since U; can be chosen arbitrarily among kinematical
admissible fields, and independently from the time of actual motion tf> the time t* can be
arbitrary. We shall proceed in selecting t* so as to obtain the best bound to Uj in the considered
class of U~. For our purpose it is immaterial whether t* is smaller or larger in comparison with
tf since we are looking for an estimate of Uj, not for its exact value.

The last integral in (2.14) involves Uj as it is seen from (2.12). Employing the bounding
principle for dissipation as proposed in [25] one obtains

f ** .** J .* . *T.. E.. dV ,,;;; K II Uk Uk' + Uk Uk ·11 dVIJ IJ ,J,J,J ,I
VO Vo

where K is specified as follows.

T~*E'~*
II II II ' **11 • / .** .**

K =SUP 11Et*li' E jj = v(E ij E jj )

(2.15)

(2.16)

and depends on the yield condition. Its magnitude for the employed yield criteria will be given
when the criterion used is discussed.

It is not attempted to estimate the field Ui(x, t) but the attention is focussed on bounding of
a specific component of the displacement, at an arbitrary point of the structure. This component
k, say, might be chosen at a specific point. For plates it will be, e.g. an estimation of the
maximum deflection. A kinematically admissible displacement rate field of the type

U;(x, t) = 8fa(x, t), k specified

where a(x, t) is usually chosen in a modal form

t* - t
a(x, t) =~ A(x).

(2.17)

(2.18)

We restrict our attention to modal forms of velocity fields, both for clarity of exposition and no
need for optimisation. Once a kinematically admissible velocity field (2.17) is chosen an
essential point is to estimate the dissipation due to the nonlinear part as stated in (2.15). The
integration of (2.15) is needed. If only one component of Uj is in question, one arrives
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(2.19)

where C is a constant to be determined depending on the kinematically admissible displacement
rate field (2.17) chosen and the yield condition employed[16].

The bounding principle for the chosen component of the displacement can now be written,
employipg (2.19) in (2.14). Imposing some restrictions as to the continuity of the kinematically
admissible velocity field uj and making use of the bounds to the integrals in (2.14), the final
result is

r"f. PjU'ds dt+ f pUOiUWidV - r" 1. T~E~ dV dtJo SOP Jvo Jo Vo

u~;,-------------------- (2.20)

and the best value is obtained selecting t* so that the r.h.s. in (2.20) attains its maximum.
The presented principle of arriving at a lower bound to specific displacement will now be

applied to anisotropic plates and shells. It was previously used to isotropic structures in [16, 17].
The formula (2.20) will be given for moderately large deflection estimation. The integrations
prescribed in (2.20) will then be performed and the constant appearing in (2.19), evaluated. The
method of bounding from below supplements the available techniques of upper bound evalua
tions when an auxiliary solution for a point loaded structure is needed[5, 14].

3. ORTHOTROPIC YIELD CRITERlON

We consider plastically orthotropic solids obeying a piece-wise linear criterion of yielding.
For definiteness the principal directions of stress are assumed to coincide with the privileged
material orientations. If TI , T2, T3 denote the principal values of stress and Ylo Y2, Y3 the
respective values of yield stress the yield criterion proposed in [22] for hydrostatic pressure
insensitive materials has the form

(3.1)

To assure convexity of the yield locus the yield points have to satisfy the conditions explicited in
[22].

For plates and shells it is necessary to establish the yield criteria in terms of the stress
resultants, therefore to specify appropriate yield surfaces in the space of stress resultants. In
the case of large deflections of circular plates the yield surface has to be expressed in terms of
bending moments Me. M. and membrllI1e forces Ne• N..

For the yield criterion (3.1) we consider the limited interaction yield locus as originally
proposed in [26] for isotropic shells. If the plate wall thickness is 2H. Y is the reference yield
stress and Y9 ={:fY. Y, =yY. We inu:oduce the reference yield moment Mo=YH 2 and yield
axial force No =2YH. Dimensionless stress resultants are defined as follows

M M N Nm =-'. m -~. n - --!.. n - e
• Mo' e- Mo' r - No' e- No' (3.2)
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Fig. l. Intersections of the limited interaction yield surfaces for orthotropic shells as well as for plates at
large displacements.

The limited interaction yield surface imposes no interaction between the bending and mem
brane stress resultants in two principal directions. For the criterion stated in (3.1) the limited
interaction yield surfaces can be visualized as in Fig. 1. The interactions take place solely in the
moment and axial forces planes.

In Table I equations of the limited interaction yield surfaces are shown. The formulas apply
under the conditions that {3 > 1 as well as (3 ;:;. 'YO +'Y). The first column of equations regards
the case shown in Fig. l(a) whereas the second concerns Figs. l(b, c). The associated vectors of
plastic strain rates are straightforward to obtain from the plastic potential flow law and will not
be explicited here. It is clear that for a given set of kinematically admissible generalized strain
rates q~ the associate set of generalized stresses Q~ is obtained employing the plastic potential
flow law as it was already mentioned in Section 2 when a kinematically admissible velocity field
was introduced.

For cylindrical shells at moderately large deflections the circumferential bending moment
can be eliminated from the yield condition as the circumferential curvature change is neglected
and therefore the circumferential moment does not contribute to the internal dissipation. The

Table l. Limited interaction yield surfaces for rotationally symmetric orthotropic shells at various
orthotropy ratios

Yield equation

1 n,+(r-1)ne,"j (or-1 )ne - Tn, ,. T

2 ne +(~·1)n," SO n - tr.=.l!! n =~e • ,

3 n,t· • ne/J3 '" 1 ne/f3 - n, '" 1

" n, + (.-l)ne '"-, (,-1)ne - Tn," -r

5 ne +(~ -11n, '"-SO
n _ IT- .$1 = -53e 'r

6 nrtT - nJI! '" - 1 nef~ - nr = -1

7 m, + {T-1)me =. (1"-1 lme - Tm, '" T

8 me + (J> -1)m, =J3 m - IT-hi m =53
e T '

9 mrlT - me/p =1 mefp - mr = 1

10 mr+\T.1)me'"-' (T-11me - Tm, '" '0

11 me + (~-1)mr =-.1> m - IT - hI m :: - 53 1e 'T r i

12 m,/'t' - metp = -1 me/ fi - m, = -1
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Table 2. Yield surfaces for isotropic and orthotropic cylindrical shells

Yield equation

isotropic orthotropic

1 -n., -1 -n,,(1-T)-Tn.,-1

2 n., = 1 rk(1-T) + Tn., - 1

3 n. - 2nll'+ m. = 2 Tn.-2Tn., -(2-T)m.=2

4 -n" .. 2n,,-m. =2 - Tn.+ 2 Tn., - (2-Tlm. =2

5 n. - 2 nIl -m. -2 Tn.- 2 rn" - (2-T)m. =2

6 -n... 2nil' +m. - 2 -Tn.+2Tn., +(2-rlm.=2

7 n. - .nll' = 1 n. - TnII' =1

8 -n.+n.,=1 - n. - Tn., =1

9 n. - m. =1 n - m• = 1.
10 - n. + m. =1 - n.- m. = 1

11 - n. - m. =1 - n.- m. = 1

12 n. + m. =1 n.- m. = 1

yield criterion (3.1) can be explicited as follows

195

(3.3)

Considering sandwich shells and denoting 'Y =YJY, (3 = Y,) Y under the requirement
'Y ;;, (3/0 + (3) one eventually obtains the set of yield planes as given in Table 2 for the case
(3 =1. For comparison the left side of Table 2 contains the relations applicable to isotropic
cylindrical sandwich shells.

To complete the discussion of anisotropic yield criteria to be applied to the deflection
evaluation according to (2.20) we have to discuss the quantity K appearing in (2.15). For the

0)

h
y

b)
Il
y

I!
y

Fig. 2. Bounding of the internal dissipation depending the material orthotropies.
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plane stress and the yield condition as shown in Fig. 2 eqn (2.16) leads to the following results

K == Max (13, YZ, y). Y or K = Max (13, yY2)' Y (3.4)

when we take Yx as the reference yield stress Y and the respective formulas correspond to the
situations shown in Fig. 2(a, b) consecutively. In comparison with the isotropic case discussed
in [251 there is a difference in the value of K when employing the principle of bounding for the
internal dissipation. These values have to be taken into account when evaluating the estimate
(2.19).

4. DEFLECTION ESTIMATES FOR ORTHOTROPIC CIRCULAR PLATES

Let us consider a rigid-plastic circular plate of cylindrical orthotropy such that Y, == 'YY,
Ye == I3Y. The plate outer radius is A and its mass per unit surface of the middle surface is p.
The plate will be subjected to loading which does not result in changing the directions of
principal stress and strain rates, coinciding with those of orthotropy. The load is applied
impulsively at t == 0 and the plate is subjected to motion which ceases at t == tf , leaving a
permanent deflection W(tf)'

At moderately large deflections theory, if U denotes the. radial displacement the equations
of motion have the form

Na - (RN,)' == - RpU,

[-(RM,)' +Mal' +(RN,W')' +RP - pRW == O. (4.1)

where P stands for the surface vertical loading and the equations are written in a polar
coordinate system R, a, t. The standard notation is used as regards differentiation with respect
to the radial variable R and the time t.

The kinematical relations concerning the rates of strain E" Ea and curvature K" Ke of the
middle surface are

. U· ..... W'
E -- E -W'W'+U' K -WIt K -a - R' , - , , - ,a - R' (4.2)

To estimate deflections due to impact loading it is necessary to specify initial, terminal and
boundary conditions. The initial conditions for the real deflections U, W are the following

W(R, 0) == 0, W(R, 0) == Wo, U(R, 0) == 0, U(R, 0) == 0 (4.3)

whereas the terminal conditions for the time instants tf and t* specified in Section 2 have the
form

W*(R, t*) == 0, U*(R, t*) == 0, W(R, tf ) == 0, U(R, tf ) == O. (4.4)

The boundary conditions depend on the support requirements. For a simply supported plate
they are

M,(A, t) == 0, W(A, t) == W(A, t) == 0, U(A, t) == U(A, t) == o. (4.5)

The set of relations concerning bounding of deflections involves as well the plastic criterion
as given in Table 1 and the plastic potential flow law relating the quantities appearing in (4.2) to
the yield condition employed.

The principle (2.20) when applied to bounding the deflection W of a plate takes eventually
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[·I A

PW*R dR dt +l A

pWo~R dR - [*f\ D(K*, t*)R dR dt
Wmax ~ 0 0 A 0 /" A 0 o. (4.6)

fa pRW*(t*) dR +fa fa pW*R dR dt +C

under the requirement that.U* =0.
In (4.6)

C =- KA t· W'* dtI .Jo R=A
(4.1)

This constant results from an estimation of the nonlinear term contribution to the internal
energy disipation, as expressed in (2.19). Specifically the result follows when considering that
W' and W'* are of the same sign. Explicit inequalities used to derive (4.7) are

~ A ~ A
10 10 RN~*WIW'*dRdt~K fa 10 RIWIW'*!dRdtEO

E; -KA t· WI*I dt· WmaxJo R-A
(4.8)

where Wmax =Max W(R, t), VR, t E (0, A), (0, tf ). The derivation is analogous as for the
isotropic case discussed in [16] and is not presented here. The only difference occurs in the
value of K, as specified in (3.4).

For computational reasons it appears useful to present (4.6) in the form.

1111 11 t*M. J:I J:1t*2 PW~drd'T+t* pWoW~rdr-7 D(K*, t*)r drd'T
w:::.. 0 0 0 0 0 (4.9)

max"" _ f pW*(l)rdr+f f pW*rdrd'T+Ct*2

where

The bound (4.9) is established assuming that W retains its modal form and is a monotonically
increasing function of time and that aW/aR has a constant sign within the range of spatial and
time variables. In [16] the conditions imposed on W and W* are specified. The conditions
require that W' is continuous although formation of hinges is, in general, admissible. Also W*"
is assumed negative within its range of continuity. Kinematically admissible velocity fields are
taken of the form U*=O, W*(R.T)= V(T)a(r), V(T) being a monotonously decreasing func
tion of time.

Therefore £~ =0, £3 =0, K~ =W~.. K3 =W~/A. We shall not present (4.9) concerning
the case involving displacement fields with hinges. The expressions for dissipation D are
straightforward to obtain, but are algebraically complicated. In applications within this note we
shall use only continuous and mode preserving velocity fields.

It is worthwhile to mention that the external energy introduced to the plate is related to the
expression.

(4.10)

For plates loaded by the velocity pulse the first integral vanishes whereas if a plate is loaded by
the pressure pulse the second integral vanishes during the first stage of motion but has to be



198 Vu VAN THE and A. SAWCZUK

accounted for in the second stage when the load is removed but the motion slows down. The
geometry changes influe.nce on the permanent displacements is estimated by the constant C
entering (4.9). For the limited interaction yield surface this constant is eventually obtained in
the form

C = - Max W~*I (I W'* I dr.
A Jo r~1

(4.11)

The maximization required in (4.11) is performed considering the hypersurface given in Table 1,
thus (3.4) is used appropriately and eventually Max IN~*1 = 'INo. If 'I = 1, f3 = 1 the condition
for isotropic plates is recovered. It should be mentioned again that the r.h.s. of (4.6) is
maximized with respect to t* so as to obtain the best lower bound.

As an example we consider a simply supported orthotropic plate loaded by the velocity
pulse Wo= const. over the entire surface. The boundary conditions of the problem are

W(A, t) = 0, W(A, t) = 0, M,(A, t) = 0. (4.12)

For the yield criterion visualized in Fig. l(a) a kinematically admissible velocity field is
assumed in the following modal form

W* = V(t)(l- RI3) (4.13)

where the time independent term constitutes the solution of a static problem as derived in [22].
The velocity field does not contain plastic hinges. As iegards V( r) it is chosen to as V-.;:; 0,
if;:. 0, V. E [0,1]. The field selected satisfies all the conditions required by (4.9).

Calculations yield

A2pWOVot* - 2t*2(f3 +2)Mo{ VCr) dr
Wmax ;:' 1

0

- PVoA 2 +2t*2(f3 +2)NoIn V( r) dr

where Vo= YeO), Vo= d V/drl.=o. The r.h.s of (4.14) attains its maximum for

(4.14)

. . 2 2

t*= HVo [1 +S n ~ '(I_PAWo 'IVo )] (415)
2'1VoWo g o-y MoH (f3+2)yNof~ V(r)dr .

Employing (4.15) in (4.14) one eventually obtains

W :::. H x[l+Sgn VoV1+X]+[l+Sgn Vov1+Xf
max~ 2'1 -X-[-1+Sgn VoVI + X]2 .

where

Selecting now V = (1 - r)", n 3 lone obtains

. __ . _ pA2W02 yen + 1)
SgnVo- 1, x- MoH x n({3+2)'

(4.16)

(4.17)

If now we consider an isotropic plate 'Y = {3 = 1 the following estimate is obtained

pWo
2
A.

2
n +1[-1 + '(I + pWo

2
A

2
(n +1»)] _[-1+ '(I +pW02A

2
(n + 1»)]2

W
:>-0 H MoH 3n 'V 3nMoH V 3nMoH

max"'" . 22 . 22 2 .
2 pWo A . n + 1+ [-1 + '(I + pWo A (n + 1))]

MoH 3n 'V 3nMoH (4.18)
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Fig. 3. Lower bounds to the permanent deflection at the plate center for various velocity fields.

The calculated estimates are traced in Fig. 3. It is seen that the best bound is for the
considered velocity field is obtained at n := 1. Taking now

W*:= (1- cp)(1- rll) (4.19)

(4.20)

the lower bound takes the form

2pWo
2
A

2
y [ '( 2pA2W02y)] [ '( 2pA2Wo2y )]2

Wmax:>-.l MoH<l3 +2) -1 + V 1+ MoH(~ + y} - -1+ V 1+ MoH(13 +2)
2H - 4')' 2pA2Wl'Y [_ '( 2pA2Wo2y )]2 .

MoH(~ +2) + 1+ V 1+ MoH(~+2}

For various orthotropy ratios ~ the bound (4.20) is traced in Fig. 4. It is seen that the
orthotropy influences the permanent deflections. Similar influence is observed for ')'.

As a further example we consider the orthotropy shown in Fig. l(c) taking the same loading
and boundary conditions as before. Then the static solution obtained in [22} is assumed as a
kinematically admissible field

(4.21)

where V(T} is such that VEl 0, V~OVT E [0, J]. This field can be employed in (4.14). The linear
part of the strain rate tensor is

Wmgl(

2H
21------~--~--,

Fig. 4. Lower bounds to the permanent deftection at the plate center dependiq on the plastic orthotropy.
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During the motion the yield condition is satisfied within the stress profile Be in Fig. l(c). If
f3 > 'Y there is a possibility of plastic hinge formation. Such a case will not be considered here.
The dissipation function of the linear part is

(4.23)

Eventually the kinematically admissible field (4.21) results in the lower bound to the
permanent maximum deflection

pWoVoA
2t*-2Mot*2(f3+2y) f V(T)dT

Wmax~ I 0

-pVoA
2 +2NO<I3+2y) LV(T)dT' t*2

The r.h.s. attains its maximum at

H Vo . ~/-
t* =:: -. --.-, [1 +Sgn Vov 1- xl

2 VoWo

where

(4.24)

(4.25)

(4.26)
Vo(I3+2y)f V(T)dT'

at Vo=:: V(O), VO=:: V(O). Introducing (4.25) into (4.24) the following lower bound to the per
manent deflection after impact is obtained

(4.27)

If, moreover VeT) =:: 1- Tis chosen the bound is

(4.28)

The results are plotted in Fig. 5 where, in addition, a comparison is made with the bound
obtained employing the linear plate theory. It is seen that significant differences in the
permanent displacements are observed in comparison with the linear theory, represented by a
straight line OA. In the considered case of orthotropy the permanent deflections are smaller
than in the isotropic case. The solutions regarding isotropy can be found in (16J. The essential
difference in the case of orthotropy is that the velocity field does not make a developable cone
but is of the form (4.13) or (4.21), as derived in [18] for the static case.

5. ORTHOTROPIC CYLINDRICAL SHELL

As a further example of application of the lower bound estimate (2.20) to the permanent
deflections due to instantaneous loading we consider a cylindrical sandwich shell of radius A
and length 2L. The shell is orthotropic and the yield properties in the axial and circumferential
directions are Yx, Y'I' respectively. A cylindrical system of coordinates is chosen, the stress
resultants being Nx, Mx, Nil" M'I" The radial and axial displacements are Wand U appropriately.
The loading is such that the principal directions of stress and strain do not vary and coincide
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Fig. 5. Comparision of permanent deftections after pulse loading according to the linear and the moderately
large displacement theories.
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with the privileged directions of orthotropy. The origin of the coordinate system is in the middle
of shell length.

The following dimensionless quantities will be employed if not stated otherwise

(5.1)

No:= 2Yh, Mo= 2YHh, Y being a reference yield stress and h denotes the plastic layer
thickness of the sandwich shell of thickness 2H.

The equations of motion under the assumptions of moderately large deflections under
rotationally symmetric loading are

(5.2)

where the only independent variable is the axial coordinate.
The kinematical relations result in the following expressions for the extension and curvature

rates

.. ., W .
\ := U' +W'W' \ =- .:. =W" .:. =0Ax , "<;> A ' "x , "<;> •

Due to symmetry, the boundary, initial and final conditions, written for 0 EO X EO L are

W(L, t) =W(L, t) =0, W*(L, t) =0

U(x, 0):= W(x,O) =0, U(x, 0) =0, W(x,O) =Wo

U(x, tf) =W(x, tt) =0, U*(x, t*) =W*(x, t*) =0

(5.3)

(5.4)

(5.5)

(5.6)

where the respective constraints at the ends depend upon the conditions of support. The
requirements (5.4) and (5.6) have to be accounted for when selecting a kinematically admissible
displacement rates U* and W*.

For the yield surface shown in Table 2 the fonowing ratios were employed reprding
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f3 =: Yx • 'V =: ~. f3 ;:" _'1
Y'l Y' ~y+l'

(5.7)

The table concerns eventually the case when f3 =: I thus the yield stress in the axial direction is
chosen for reference. As K", =: 0 the circumferential moment can be eliminated from the yield
criterion and hence the results given in Table 2 concern explicitly infinitesimal motion of such a
moderately displacements when K", =: 0 is justified.

The recalled principal equations of plastic shells at moderately large deflections allow to
pass to specifications of the bounding principle (2.20). We require further that the real deflection
W preserves its mode, is a monotonic function of time and that W' has a constant sign for
'fix E [0, L], 'fit E [0, tf ]. The bounding principle takes the form

t* { { PW* dx d-r +{ pWoW~ dx - t* rl rl

D(E*, K*) dx d-r
W ;:" 0 0 0 Jo Jo (5 8)

max ~ 11 W*(1) I 1111
••. •

- -*-dx +"* pW* dx d-r + Ct*
ott 0 0

where t*, is as before, the terminal time of motion according to the kinematically admissible
deflection rate U* =: 0, W* #- O. A kinematically admissible strain rates are

(5.9)

Making use of these quantities in the expression for the dissipation D(E*, K*) entering the
numerator in (5.8) we obtain for a simply supported shell the expression

i
1l 1

2M l xk

+ ' 11 ( W* )D(E*,K*)dxd-r=:-o~ n:W*+m~-T dxd-r
o 0 AH 4t Xk 0 C

(5.10)

where the internal forces in the field and at the hinges are obtained from the yield criterion
employing the plastic potential flow law and imposing the prescribed motion (5.9). Usually we
shall use continuous kinematically admissible fields so that the terms concerning radial hinges
disappear except possibly the case of a clamped shell.

The constant C appearing in the denominator of (5.8) can eventually be written in the form

C =: Max IN~*I-b f W,X L=I dr. (5.11 )

The maximization has to be done employing the yield condition as given for example in Table 2.
In this case Max IN~*I =: No. The time t* is obtained similarly as in the previously discussed
case of plates requiring that the r.h.s. of (5.8) attains its maximum.

As an example let us consider a simply supported shell loaded by the pulse of velocity
Wo=: const. The boundary conditions are

W(L, t) =: W(L, t) =: 0, MAL, t) =: 0, 'fit E [0, tf ] (5.12)

Except for a time dependent multiplier, we choose a kinematically admissible displacement rate
field as in the static case of orthotropic shell, [22]

W* =: V(T)Sh[~2~ 'I c(1- x)], U* =: 0 (5.13)
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where V(T) is to be selected so as to fulfil the conditions V(l) ~ 0, V(T) ~ 0, VT€[O,1]. The field
(5.13) satisfies all the requirements imposed on kinematically admissible fields suitable to
considerations when employing (5.8). The linear part of the strain rate tensor is

K: =0, X~ =0, X: = V~T)Sh[~2~ 1 e(l- x)J. K~ = V1
T
)2~ 1Sh(~2~1 e(l- x)l

(5.14)

Employing (5.13) in (5.8) one eventually obtains

>- [pWoV(O)- 21~*f V(T)d1']f Sh[~2; 'Y ex] dx
Wmax "" • I I' (5.15)

-p ~~O) fa Sh[~2~YeX)dX+Ntr fa V(T)dT

Imposing a particular form of V(T), on the basis of considerations concerning plates, we assume

V(T) = (1- T). (5.16)

Then (5.15) results in

The r.h.s. attains its maximum for

ch~be2-1 [
t*=H' y. -1+

(2- y)Wo
(5.18)

6

5

160 trr.1H~12080

2

3

FE

O~_E-__-+- t-~,"",A,---_

~.O) n.,

Fig. 6. Fig. 7.

Fig. 6. Orthotropic yield criterion for cylindrical shells.

Fig. 7. Lower bounds to the permanent deflection at the cellter of orthotropic shells at various ratios of the
circumferential to axial yield points.
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Eventually from (5.17) and (5.18) a lower bound to the maximum permanent deflection is
obtained in the form

where

)'(2 - y)

(5.19)

(5.20)

For the particular case c2 =1 the bound (5.19) is shown in Fig. 7. The result is compared
with the isotropic case when 'Y == 1. It is seen that the final deflection is nonlinear with respect to
the initial velocity and how orthotropy influence the deformed shape. To make conclusive
remarks as regards the influence of orthotropy various kinematically admissible velocity fields
W* should be considered allowing, possibly, for the coUapse modes involving hinges. Such a
possibility is included in the general formula (5.8).

6. CONCLUSIONS

The method concerning estimation from below of the permanent deflections of dypamically
loaded structures and allowing to take into account the influence of geometrical nonlinearity on
the final response can be extended on orthotropic solids in a straightforward manner. The
method developed in [16, 17] allows to bound from below the permanent deflections of
impacted structures considered in (20J but now at their moderately large deflection. The method
employs the equation of motion referred to the undeformed configuration thus the deformed
shape enters the basic relations. The unknown displacements are estimated via introducing a
kinematically admissible velocity field Vi(x, t) =V(t)A(x), thus assuming specific modes of
deformation. As the modes of deformation those concerning the static response can be selected
and optimalization of the time function Vet) is usually made. The general expression for a
lower bound estimate involves the time of motion t*. This quantity can be evaluated employing
the standard extremum condition considering the actually chosen kinematically admissible
velocity field vi. Restrictions regarding smoothness of the fields involved were applied in the
considered examples but the general expressions allow for the deflection modes with hinges,
expressions for the energy dissipation then being more cumbersome in application.

Accounting for the plastic anisotropy modifies the expressions concerning the internal
dissipation and therefore an estimate of the nonlinear part of the dissipation, in addition to
influencing values of the linear part.
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